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Abstract 

The invariant  manifolds  associated with the  outer  planets are extremely  large 
objects in phase space .  They a r e  trajectories in the  ecliptic which intersect  one 
another. The enables  a low energy  single  impulse  transfer  between  the  planets 
which requires  several  orbital  periods.  However, if we consider  the  Jovian 
satellites  where  the  same  dynamics  occur  but with much  shorter  orbital  periods, 
this  approach  may be used  for  new  tour  designs  requiring minimal AV. The 
existence of this transfer is a n  indication of the  instability of the  region of s p a c e  
between  the  satellites. It may  explain  some of the  difficulties encountered in 
traditional  satellite  tour  designs  using  conic  approximations. 

Introduction 

This is o n e  of a planned  series of papers  describing  work w h i c h  began in 1994 
to  explore  the  dynamics of the  three body problem  to  find new  trajectories  for 
future  missions. The discoveries  made in this  work w i l l  open  up  new  families of 
low-energy  missions. Some  of the  ideas already  being  used  are: 

1. The design of the Genesis  Discovery  Mission  orbit (Ref. Howell, 

2. The ARIANE V Piggy  Back  Option to Mars  and  Venus. 
Barden, Lo). 

It contributes  to  long-standing  phenomena in the  dynamics of the  Solar  System 
and  celestial  mechanics  including: 

1 .  The Temporary  Capture of Jupiter  Comets. 
2. The Stability of the  Hilda Asteroids. 
3. 7 h e  Kirkwood Gaps. 
4. The Structure of the  Zodical Dust Tori 
5. Interplanetary  Transport  Between The Kuiper Belt a n d  The Inner  Solar 

System 

The major theme in this work is the  interplay  between  Solar  System  dynamics 
and  astrodynamics.  Nature’s  resourcefulness  and  efficiency  are  hard  to  beat. By 
understanding the motion of natural bodies, that same  dynamics  can be used  for 
space  missions. For example  the  Temporary  Capture of comets by Jupiter 



suggests  a low energy  capture of a spacecraft by a planet or moon. Similarly, 
the   same  mean motion resonances which govern  the  asteroid  distribution also 
provide a map  for low energy  interplanetary  transfers. 

The second  theme in this  work is the   u se  of dynamical  systems  theory to 
achieve low energy  transfers. This rich and  complex  dynamics is provided  gratis 
by the  collinear  Lagrange  points L1 , L2, and  L3. 

In order  to  understand  the  applications  to space missions, we must first 
understand  the  natural  dynamics of the  Solar  System which we want  to  use. This 
paper  focuses  on  the  interplanetary  transport  and  the  temporary  capture 
mechanisms  controlled  by L1 a n d  L2. The reader is referred  to  the rich but 
difficult paper  of Llbre,  Martinez, and  Simo  for  an in depth  description of the  
mathematical  foundations. 

The  Dynamic  Currents In Space 

We typically  think of space  as empty. But dynamically, it is actually filled with 
layers  and  layers of high dimensional  energy  surfaces. A particle on   an   energy  
surface is constrained  to  move  on  that  surface until its  energy  changes  such as 
through a collision or propulsion. The energy is itself foliated (filled) with layers 
and  layers of lower  dimensional  surfaces which in o n e  way or another  constrain 
the motion of particles  on  them. These surfaces   are  called invariant  surfaces 
a n d   s p a c e  is foliated with them  much like a n  onion with layers  and  layers of 
skins.  Ultimately,  they a r e   m a d e   u p  of trajectories in the  space. The 
mathematical  name  for  the  invariant  surfaces is invariant manifolds. 

Among  the  invariant  manifolds a r e  two important classes called the stable 
manifold a n d   t h e  unstable  manifold which are  associated  to  unstable  periodic 
orljits. The stable manifold consists of trajectories which exponentially  approach 
the  periodic orbit. The unstable  manifold  consists of trajectories which 
exponentially  leaves  the  periodic  orbit. These manifolds a r e  like the  great  
currents of the   ocean  or the  jet   stream in the  atmosphere which a r e  able to 
quickly convey  objects  from  one  region of space   to  a distant  region. In the case 
of space  trajectories,  these  manifolds  can  provide  an  essentially zero-AV 
transport  over  vast  regions! 

Today's  trajectory  design  methodology is akin  to  ancient  mariners  crossing  the 
Atlantic  with little or no  knowledge of the  major  currents  driving  the  ocean. 
Sometimes  they  are  trapped in the still waters of the  Zaragosa sea; sometimes 
they  fortuitously t ap  into a channel which sends  them  speedily  to  their  target 
;sometimes  they  are thrown  way off course  not  knowing  that  the  currents  have 
changed. We, like them, are searching  for a course to navigate in space without 
knowledge of the  great  dynamical  currents  and  channels in space. Frequently 
we run  into  energy  barriers  without a good understanding of how they  arise or 
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how to get  around  them.  Sometimes we get  lucky and  find a n  incredibly low 
energy  transfer which can  be difficult to  reproduce if initial conditions  are 
changed  even slightly.  Much of trajectory  design  today  depends  on  the  collected 
wisdom and  knowledge of old space mariners which are handed  down in an  oral  
tradition  not  unlike  that of sea faring days  of yore. 

The stable  and  unstable  manifolds  are  some of the  most powerful  "gravitational 
jet  streams" in the  Solar  System which govern  the  motions of the  celestial bodies 
and  shaped the  structure of the  Solar  System.  They  provide low energy  transfers 
and  planetary  captures which a r e  of great  interests  to  future  missions. 
Knowledge of this system of currents  and  channels which connect  the  entire 
Solar  System  are  essential  for  mission  design in the  new millenium. 

The Source of the Dynamical Currents and  Channels:  The  Lagrange  Points 

Figure l a  shows the five  Lagrange  points in the  Sun-Jupiter  system in rotating 
coordinates. The origin is at  the  Sun-Jupiter  barycenter; the  Sun  and   Jupi te r   a re  
fixed on   t he  x-axis in this  coordinate  system with Jupiter's  orbit in t he  xy-plane. 
The most  fundamental  invariant  manifolds of this  system  are  associated with the  
five  Lagrange  points.  They  are  the seeds of the  dynamics of this  system. We will 
concentrate  on  the  role of L1 and  L2. 

L1 and  L2 each have  a onedimensional  stable  and  unstable manifold. In Figure 
la, the  manifolds of L1 a r e  plotted in green;   the manifolds of L2 a r e  plotted in 
black. The stable manifold is indicated  by  the dashed curve,  the  unstable 
manifold  by the solid curve. The strange shapes of these  curves  are  the  result  of 
the rotating  coordinate  system which is evoke  these  patterns  that   are  otherwise 
ordinary-looking  elliptical orbits in inertial space. This, in part, is the  reason 
rotating  coordinates  are so powerful for  this  problem. We divide s p a c e  into three 
regions:  the  region  inside of Jupiter's  orbit (dashed circle about   the  Sun)  is the 
Interior  Region; t he  region  outside of Jupiter's  orbit is the Exterior  Region;  the 
region  between L1 and  L2 which includes  Jupiter is the  Capture  Region  for 
reasons which will be clear  shortly.  Figure I b  shows the manifolds in the  
Capture  Region  where  they  are  "captured" by  Jupiter.  Note  that  the  stable 
manifold of L1 and  the  unstable manifold of L2 a re  very  near each other   and 
conspire  to  move  from L2 to L1 showing  that  there is a dynamical  connection 
between !2 and  L1. A similar  connection  exists  between L1 and  L2 but  the 
additional  manifolds  would  confuse  the  already  complex  picture  and  are 
therefore  not shown here. 

If L1 and  L2 a re   t he  seeds of this  dynamical  system,  the  invariant  manifolds of 
L1 and  L2 a r e  like the  DNA of the  system in the  following sense.  Their  behavior 
characterizes  that of the  system; by understanding how these four  trajectories, 
the  stable and  unstable  manifolds of L1 and  L2, behave, we c a n   g e t   a n  
incredibly detailed picture of many  features of the  Solar  System.  Knowledge of 



this dynamics in turn allows us  to design  new  trajectories  to enable the 
increasingly  more  demanding  new  mission  concepts. 

Applications to  Solar  System  Dynamics 

1. The  Temporary Capture of Comets  by Jupiter 

In Figure 2a we  have superimposed  the orbit of the  comet  Oterma  on  that of 
Figure  1.  Figure 2b is a blow up of Jupiter's  Capture  Region.  Recall  everything is 
plotted in rotating  coordinates.  Oterma's  orbit is obtained  from JPL Section  312's 
Horizon 2000 small  body  trajectory  integrator.  Note  how  closely  the  comet  orbit 
follows the  manifolds  going  into  the  Capture  Region  and  exiting it in Fig. 2b. 
Note how the  comet orbit in the Interior Region first  follows the  unstable manifold 
leaving L1 , but  then  gets  caught  on  the  stable manifold  returning it to L1.  In both 
the Interior and Exterior Regions,  the  comet orbit has the  characterist ic  shapes 
of the manifolds in the  corresponding  region. 

Figure 3a,b is the   s ame  portrait for the  comet  Gehrels 3. In this case, the  comet 
is captured by  Jupiter  temporarily  for  several  orbits. This is the so-called 
Temporary  Capture  Phenomenon  for  Jupiter family comets.  Note  there is a 
kidney-shaped orbit around L2  which is typical of halo orbits. Halo orbits are w e l l  
known  periodic  orbits  around  the  Lagrange  points which have invariant  manifold 
structures of their  own.  Evidently,  Gehrels 3 was attracted  by  the  stable manifold 
of this halo orbit and  then  repelled by its unstable manifold  resulting in this 
picture. 

Figures 4a,b provide  the  protrait of comet  Helin-Crockett-Roman. Like Gehrels 
3, it too was temporarily  captured by Jupiter  for  several  periods. A careful 
estimate of the  periods of all three  comet  orbits as well as that of the manifolds 
of 'L1 and L2 show  that in the Interior Region,  the  orbits are all near   the 3:2 
resonance of Sun-Jupiter  system; in the  Exterior Region,  the  orbits  are all near  
the  2:3  resonance. (By  3:2  resonance we mean  the  comet  travels 3 times  around 
the  Sun for every  two  orbits of Jupiter  around  the  Sun.)  Thus, by studying  the 
stable  and  unstable  manifolds of L1 and L2, we  can get a s e n s e  of how  the 
temporary  capture  phenomenon  occurs. This includes  the  fact  that  the  comet 
must  enter  and exit by way of L1 and L2  into and  out of the  Capture  Region;  the 
comet  orbit  changes  resonance  period  going  betweert  the Interior and Exterior 
Regions  and  always in the  characterisitic 3:2 and 2:3 resonances.  These facts 
are w e l l  documented by observations  and  dynamical  simulations  (Ref.  Belbruno 
& Marsden). They are  explained by the invariant  manifolds of L1 and L2. 

It is remarkable  that two simple  orbits,  the  stable  and  unstable manifold of 
Jupiter's L1,  have provided  such a wealth of information on  the  structure of the 
Solar System  just  from  cursory  examination of their  geometry.  They are, in this 
sense ,   the  DNA of the  dynamics of the Solar System. 



2. SURFing: Interplanetary Transport 

The manifolds of the planets  intersect!  Figure 5 shows the  intersection of 
Jupiter's L2 manifolds  and  Saturn's L1 manifolds. This case is special because  it 
occurs so quickly and   because   the  two manifolds are  nearly in phase. This may 
have  something  to  say  about  the so-called Great  Inequality,  the  near 
commensurability of their  periods.  Also,  the  fact  that  the  intersection  occurs so 
quickly is a n  indication that transport  between  Jupiter  and  Saturn  can  occur 
easily so that we would  not  expect  to find any  permament  belt  structure in this 
region.  However, the  more  important  thing  to  notice is that  their  manifolds 
intersect. In fact  from  Jupiter  to  Neptune,  the  manifolds of all of the  outter 
planets' L1 a n d  L2 manifolds  intersect one  another  forming a great  gravitational 
network of dynamic  currents  and  channels  between  the  Asteroid Belt a n d   t h e  
Kuiper Belt. For the  Inner  Solar  System, the connection  between  Earth  and 
Venus has been  verified.  Verification  for the  other cases is underway. 

In other  words,  great  portions of the  entire  Solar  System is dynamically  linked  by 
these  manifolds. This offers a transport  mechanism  whereby  objects  can  move in 
and  out of the  Solar  System  along  this  pathway of L1 and L2 manifolds. In the  
current  configuration, a change  in velocity is required  to  transition  from  one 
manifold to  the  next. This can  occur from  collisions,  for  example.  However, 
nearby  paths  exists which do not  require a AV much as the  orbit of Oterma 
transitioned  from  the  unstable  manifold of L1 onto  the  stable manifold of L1 in 
the Interior Region of Jupiter  without a AV. In fact, as mentioned  before,  the 
manifolds of L1 and  L2 a re   t he  "seed" orbits.  There  are  layers  and  layers of 
manifolds of the  halo and  lissajous  orbits which foliate  the  space  centered  on  the 
manifolds of L1 a n d  L2. These complex  manifolds a r e  really the  ones  governing 
the  dynamics  known as "lobe dynamics  arising from  homoclinic  orbits'' which 
was just  discovered in the  last 10 years. An excellent  reference is Wiggins. 

The intersection of the L2 unstable manifold of Jupiter with the  L1 
s d  of Saturg-  provides a transfer from  Jupiter's L2 to Saturn's 
L1 which required 13 years  time of flight and  a AV of 900 m/s  at  the  intersection 
of the  manifolds.  Compare  this with the  standard  Hohmann  transfer which 
requires 2716 m/s  and 9.9 years. While this  orbit  may  only be of academic 
interest  due to the  long  time of flight, the  same  technique  applies to planet-moon 
systems  where  the  periods  are  much  smaller so that  such  transfers  become 
useful  for  mission  design  purposes. 

lk f i g  6 .  

In addition  to  the  transport, the  Lagrange  points  can also be used to provide  low 
energy  captures  such as was demonstrated by the temporary  capture of Jupiter 
comets.  Indeed  this  technique was used  to rescue   the   Japanese  Hiten  Mission 
with great   success  [Ref.  Belbruno, Miller] 



We think of the gravitational  network of dynamical  currents as a ser ies  of waves 
provided by the planetary  tidal  forces  on which a comet or spacecraft   can surf 
from planet  to  planet,  stopping  occasionally in a temporary  capture,  making  the 
Grand Tour on  an  economy AV-budget. 

Summary 

The  network of dynamic  currents  and  channels  generated by the  stable  and 
unstable  manifolds of the  planetary L1 and  L2  Lagrange  points  play a n  important 
role in the distribution and  transport of material in the  Solar   System.  We  have 
shown that  they  guide  the  paths of Jupiter family comets in their  temporary 
capture by  Jupiter. Like the  terzarima  rhyme scheme which unifies  Dante's 
"Divine Comedy",  the  gravitational  network  links  planet  to  planet  providing a 
transport  mechanism  through  the  entire  Solar  System  from  the  Sun  to  the  Kuiper 
Belt. 

In a subsequent  paper  we w i l l  show how these  simple  I-dimensional  manifolds 
enable  us  to  visualize  the  complex  resonance  structure of the  Solar  System. 
Using  more  refined  techniques we w i l l  be able to  compute  transport  rates  and 
density  distributions which a r e  currently  under  way.  They  provide a remarkably 
simple,  unified  explanation  for  many  disparate  dynamical  phenomena in the 
Solar System  on  every scale from  comet  motion  to  belt  structures  and  dust tori. 

Remarks 

This  work  began with a SURF project in 1994 which is why we  chose "SURFing" 
to name this approach. 
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